A079125 Number of ways to partition the sum of all divisors of n (sigma(n), A000203) into distinct positive integers not greater than n.
1, 1, 1, 2, 3, 5, 5, 13, 13, 27, 14, 89, 21, 89, 97, 230, 45, 613, 63, 980, 347, 580, 121, 6663, 330, 1289, 1043, 5847, 295, 26488, 389, 12813, 2800, 5411, 2840, 156304, 863, 10433, 6939, 161711, 1425, 272499, 1815, 103738, 61469, 35448, 2909, 2475011
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[n_] := Module[{sum = DivisorSigma[1, n], x}, CoefficientList[Product[1 + x^i, {i, 1, n}], x][[1 + sum]]]; Array[a, 50] (* Amiram Eldar, Apr 15 2025 *)
-
PARI
a(n)=my(v=partitions(sigma(n),n));sum(i=1,#v,#vecsort(v[i],,8)==#v[i]) \\ Charles R Greathouse IV, Feb 14 2013
Formula
a(n) = b(0, n), b(m, n) = 1 + Sum_{m < i < j < n & i+j = sigma(n)} b(i, j).