cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079149 Primes p such that either p-1 or p+1 has at most 2 prime factors, counted with multiplicity; i.e., primes p such that either bigomega(p-1) <= 2 or bigomega(p+1) <= 2, where bigomega(n) = A001222(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 37, 47, 59, 61, 73, 83, 107, 157, 167, 179, 193, 227, 263, 277, 313, 347, 359, 383, 397, 421, 457, 467, 479, 503, 541, 563, 587, 613, 661, 673, 719, 733, 757, 839, 863, 877, 887, 983, 997, 1019, 1093, 1153, 1187, 1201, 1213, 1237
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

There are only 2 primes such that both p-1 and p+1 have at most 2 prime factors - 3 and 5. Proof: If p > 5 then whichever of p-1 and p+1 is divisible by 4 has at least 3 prime factors.
Primes which are not the sum of two consecutive composite numbers. - Juri-Stepan Gerasimov, Nov 15 2009

Crossrefs

Union of A079147 and A079148. Cf. A060254, A079152.

Programs

  • Mathematica
    Select[Prime[Range[500]],MemberQ[PrimeOmega[{#-1,#+1}],2]&] (* Harvey P. Dale, Sep 04 2011 *)
  • PARI
    s(n) = {sr=0; ct=0; forprime(x=2,n, if(bigomega(x-1) < 3 || bigomega(x+1) < 3, print1(x" "); sr+=1.0/x; ct+=1; ); ); print(); print(ct" "sr); } \\ Lists primes p<=n such that p+-1 has at most 2 prime factors.