cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079208 Number of isomorphism classes of associative non-commutative non-anti-associative anti-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
The only closed binary operations that are both commutative and anti-commutative are those on sets of size <= 1. The significance of non-commutative (and non-anti-associative) in the name is that it excludes this possibility. Otherwise, the first two terms would be 1. - Andrew Howroyd, Jan 26 2022

Examples

			Triangle T(n,k) begins:
  0;
  0;
  2, 0;
  2, 0, 0, 0;
  2, 0, 0, 0, 1, 0, 0, 0;
  2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Formula

A079202(n,k) + A079203(n,k) + A079204(n,k) + A079205(n,k) + A079197(n,k) + A079207(n,k) + T(n,k) + A079201(n,k) = A079171(n,k).
A079242(n,k) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=0 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022