A079216 Square array A(n>=0,k>=1) (listed antidiagonally: A(0,1)=1, A(1,1)=1, A(0,2)=1, A(2,1)=2, A(1,2)=1, A(0,3)=1, A(3,1)=3, ...) giving the number of n-edge general plane trees fixed by k-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 5, 2, 1, 1, 6, 11, 3, 2, 1, 1, 10, 26, 8, 5, 2, 1, 1, 11, 66, 18, 11, 3, 2, 1, 1, 18, 161, 43, 30, 5, 5, 2, 1, 1, 21, 420, 104, 82, 6, 14, 3, 2, 1, 1, 34, 1093, 273, 233, 15, 38, 5, 5, 2, 1, 1, 35, 2916, 702, 680, 36, 111, 6, 11, 3, 2, 1, 1, 68, 7819, 1870
Offset: 0
Links
Crossrefs
Programs
-
Maple
with(combinat, composition); # composition(n,k) gives ordered partitions of integer n into k parts. [seq(A079216(n),n=0..119)]; A079216 := n -> A079216bi(A025581(n), A002262(n)+1); A079216bi := proc(n,k) option remember; local r; if(0 = n) then RETURN(1); else RETURN(add(PFixedByA057511(n,k,r),r=1..n)); fi; end; PFixedByA057511 := proc(n,k,r) option remember; local ncycles, cyclen, i, c; ncycles := igcd(r,k); cyclen := r/ncycles; if(0 <> (n mod cyclen)) then RETURN(0); else add(mul(A079216bi(i-1,ilcm(r,k)),i=c),c=composition(n/cyclen,ncycles)); fi; end;
Formula
A(0, k) = 1. A(n, k) = Sum_{r=1..n where r/gcd(r, k) divides n} Sum_{c as each composition of n/(r/gcd(r, k)) into gcd(r, k) parts} Product_{i as each composant of c} A(i-1, lcm(r, k))
Comments