cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079216 Square array A(n>=0,k>=1) (listed antidiagonally: A(0,1)=1, A(1,1)=1, A(0,2)=1, A(2,1)=2, A(1,2)=1, A(0,3)=1, A(3,1)=3, ...) giving the number of n-edge general plane trees fixed by k-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 5, 2, 1, 1, 6, 11, 3, 2, 1, 1, 10, 26, 8, 5, 2, 1, 1, 11, 66, 18, 11, 3, 2, 1, 1, 18, 161, 43, 30, 5, 5, 2, 1, 1, 21, 420, 104, 82, 6, 14, 3, 2, 1, 1, 34, 1093, 273, 233, 15, 38, 5, 5, 2, 1, 1, 35, 2916, 702, 680, 36, 111, 6, 11, 3, 2, 1, 1, 68, 7819, 1870
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Comments

Note: the counts given here are inclusive, e.g. A(n,6) includes the counts A(n,3) and A(n,2) which in turn both include A(n,1).

Crossrefs

A(n, A003418(n)) = A000108(n). The first row: A057546, second: A079223, third: A079224, fourth: A079225, fifth: A079226, sixth: A079227. Cf. also A079217-A079222.

Programs

  • Maple
    with(combinat, composition); # composition(n,k) gives ordered partitions of integer n into k parts.
    [seq(A079216(n),n=0..119)]; A079216 := n -> A079216bi(A025581(n), A002262(n)+1);
    A079216bi := proc(n,k) option remember; local r; if(0 = n) then RETURN(1); else RETURN(add(PFixedByA057511(n,k,r),r=1..n)); fi; end;
    PFixedByA057511 := proc(n,k,r) option remember; local ncycles, cyclen, i, c; ncycles := igcd(r,k); cyclen := r/ncycles; if(0 <> (n mod cyclen)) then RETURN(0); else add(mul(A079216bi(i-1,ilcm(r,k)),i=c),c=composition(n/cyclen,ncycles)); fi; end;

Formula

A(0, k) = 1. A(n, k) = Sum_{r=1..n where r/gcd(r, k) divides n} Sum_{c as each composition of n/(r/gcd(r, k)) into gcd(r, k) parts} Product_{i as each composant of c} A(i-1, lcm(r, k))