cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079217 Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=0, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 6, 2, 1, 0, 0, 1, 10, 0, 0, 0, 0, 0, 1, 11, 5, 0, 1, 0, 0, 0, 1, 18, 0, 2, 0, 0, 0, 0, 0, 1, 21, 11, 0, 0, 1, 0, 0, 0, 0, 1, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 35, 26, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 68, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 69, 66, 0, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Crossrefs

The row sums equal to the left edge shifted left once = A057546 = first row of A079216 (the latter gives the Maple procedure PFixedByA057511).

Programs

A079222 Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the six-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 0, 1, 38, 42, 28, 2, 0, 1, 111, 124, 90, 0, 0, 6, 1, 332, 379, 285, 5, 0, 27, 0, 1, 1029, 1178, 914, 0, 0, 110, 0, 0, 1, 3232, 3742, 2955, 14, 1, 429, 0, 0, 0, 1, 10374, 12024, 9666, 0, 0, 1614, 0, 0, 0, 0, 1, 33679, 39200, 31853, 42, 0
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Comments

Note: the counts given here are inclusive, i.e. T(n,d) includes also the counts A079218(n,d) and A079219(n,d).

Crossrefs

The row sums equal to the left edge shifted left once = A079227 = sixth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079221 and A003056 & A002262.

Programs

A079223 Number of Catalan objects fixed by two-fold application of the Catalan bijections A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 66, 161, 420, 1093, 2916, 7819, 21304, 58321, 161233, 448090, 1253252, 3521389, 9941693, 28175716, 80152141, 228747967, 654817275, 1879602446, 5408974390, 15601662378, 45098766532, 130624550412
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Crossrefs

The second row of A079216. The leftmost edge of the triangle A079218 and also its row sums shifted by one. Occurs for first time in A073202 as row 245. Cf. A057546, A079224, A079225, A079226, A079227.

Programs

Formula

a(n) = A079216(n, 2)

A079220 Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the four-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 0, 1, 11, 14, 0, 4, 1, 30, 36, 1, 14, 0, 1, 82, 102, 0, 48, 0, 0, 1, 233, 293, 0, 153, 0, 0, 0, 1, 680, 860, 2, 488, 0, 2, 0, 0, 1, 2033, 2575, 0, 1550, 1, 0, 0, 4, 0, 1, 6164, 7838, 0, 4920, 0, 0, 0, 0, 0, 0, 1, 18923, 24148, 5, 15672, 0, 5, 0, 14, 0, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Comments

Note: the counts given here are inclusive, i.e. T(n,d) includes also the count A079218(n,d).

Crossrefs

The row sums equal to the left edge shifted left once = A079225 = fourth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079222 and A003056 & A002262.

Programs

Showing 1-4 of 4 results.