A079256 a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is a power of 2".
1, 2, 5, 6, 8, 16, 17, 32, 33, 34, 35, 36, 37, 38, 39, 64, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 32769, 32770, 32771, 32772, 32773, 32774, 32775, 32776, 32777, 32778
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
Programs
-
Maple
A:= Vector(100): A[1..5]:= <1,2,5,6,8>: going:= true; for n from 3 while going do for k from 0 to A[n+1]-A[n] do if A[n]+k > 100 then going:= false; break fi; A[A[n]+k]:= 2^n+k od od: convert(A,list); # Robert Israel, Mar 20 2019