A079278 Define a rational sequence {b(n)} as b(1) = 1, b(n) = b(n-1) + 1/(1 + 1/b(n-1)) for n > 1; a(n) is the denominator of b(n).
1, 2, 10, 310, 363010, 594665194510, 1871071000515058250871610, 21362861761506953021644584296874581450310229239910
Offset: 1
Examples
The b sequence begins 1, 3/2, 21/10, 861/310, 1275141/363010, 2551762438701/594665194510, ...
References
- Suggested by Leroy Quet, Feb 14 2003.
Programs
-
Maple
b := proc(n) option remember; if n=1 then 1 else b(n-1)+1/(1+1/b(n-1)); fi; end;
-
Mathematica
Denominator[NestList[#+1/(1+1/#)&,1,10]] (* Harvey P. Dale, Oct 07 2012 *)
Formula
Conjecture (Quet): a(m+1) = a(m)^2 + a(m)^3 / a(m-1)^2 - a(m)*a(m-1)^2 for m >= 2.
Comments