A079316 Number of first-quadrant cells (including the two boundaries) that are ON at stage n of the cellular automaton described in A079317.
1, 3, 3, 7, 5, 11, 9, 21, 11, 25, 15, 35, 19, 45, 29, 73, 31, 77, 35, 87, 39, 97, 49, 125, 53, 135, 63, 163, 73, 191, 101, 273, 103, 277, 107, 287, 111, 297, 121, 325, 125, 335, 135, 363, 145, 391, 173, 473, 177, 483, 187, 511, 197, 539, 225, 621, 235, 649, 263, 731
Offset: 0
References
- D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- D. Singmaster, On the cellular automaton of Ulam and Warburton, 2003 [Cached copy, included with permission]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
PARI
M=matrix(101,101); M[1,1]=1; for(s=1,100, c=[]; a=M[1,1]; for(x=2,100, for(y=2,100, a+=M[x,y]; if(M[x-1,y]+M[x+1,y]+M[x,y-1]+M[x,y+1]==1, c=concat(c,[[x,y]]) )); a+=M[x,1]+M[1,x]; if(M[x,2]==0 && M[x-1,1]+M[x+1,1]==1, c=concat(c,[[x,1]]) ); if(M[2,x]==0 && M[1,x-1]+M[1,x+1]==1, c=concat(c,[[1,x]]) )); print1(a,", "); for(i=1,length(c),M[c[i][1],c[i][2]]=1-M[c[i][1],c[i][2]]) ) \\ Max Alekseyev, Feb 02 2007
Extensions
More terms from Max Alekseyev, Feb 02 2007
Edited by N. J. A. Sloane, Aug 05 2009
Comments