cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079318 a(0) = 1; for n > 0, a(n) = (3^(A000120(n)-1) + 1)/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 14, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14, 41, 14, 41, 41, 122, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Examples

			From _Omar E. Pol_, Jul 18 2009: (Start)
If written as a triangle:
1;
1;
1,2;
1,2,2,5;
1,2,2,5,2,5,5,14;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41,2,5,5,14,5,14,14,41,5,14,14,41,14,41,41,122;
(End)
		

References

  • Alex Fink, Aviezri S. Fraenkel and Carlos Santos, LIM is not slim, International Journal of Game Theory, May 2013
  • David Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.

Crossrefs

Programs

  • Mathematica
    a[n_] := (3^(DigitCount[n, 2, 1] - 1) + 1)/2; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jul 29 2023 *)

Formula

For n>=1, a(n) mod 2 = A010060(n), the Thue-Morse sequence - Benoit Cloitre, Mar 23 2004
a(n) = Sum_{i+j+k=n, 0<=k<=j<=i<=n} (n!/(i!*j!*k!) mod 2). - Benoit Cloitre, Jul 02 2004