A079318 a(0) = 1; for n > 0, a(n) = (3^(A000120(n)-1) + 1)/2.
1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 14, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14, 41, 14, 41, 41, 122, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14
Offset: 0
Examples
From _Omar E. Pol_, Jul 18 2009: (Start) If written as a triangle: 1; 1; 1,2; 1,2,2,5; 1,2,2,5,2,5,5,14; 1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41; 1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41,2,5,5,14,5,14,14,41,5,14,14,41,14,41,41,122; (End)
References
- Alex Fink, Aviezri S. Fraenkel and Carlos Santos, LIM is not slim, International Journal of Game Theory, May 2013
- David Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- David Singmaster, On the cellular automaton of Ulam and Warburton, 2003 [Cached copy, included with permission]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Mathematica
a[n_] := (3^(DigitCount[n, 2, 1] - 1) + 1)/2; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jul 29 2023 *)
Formula
For n>=1, a(n) mod 2 = A010060(n), the Thue-Morse sequence - Benoit Cloitre, Mar 23 2004
a(n) = Sum_{i+j+k=n, 0<=k<=j<=i<=n} (n!/(i!*j!*k!) mod 2). - Benoit Cloitre, Jul 02 2004