A079334 Numbers k such that k divides tau(k) and k+1 divides tau(k+1), where tau(k)=A000594(k) is Ramanujan's tau function; i.e., k and k+1 are in A063938.
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 90, 91, 125, 160, 161, 224, 440, 728, 735, 2024, 2400, 2744, 4095, 4374, 12879, 13824, 20735, 30624
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Tau Function.
Programs
-
Mathematica
(* First do <
-
PARI
tauvec(N) = Vec(q*eta(q + O(q^N))^24) v=tauvec(10000); for(n=1,#v-1,if(Mod(v[n],n) == 0 && Mod(v[n+1],n+1) == 0,print1(n", "))) \\ Dana Jacobsen, Sep 06 2015
-
Perl
use ntheory ":all"; my @p = grep { !(ramanujan_tau($) % $) } 1..10000; for (0 .. $#p-1) { say $p[$] if $p[$]+1 == $p[$+1] } # _Dana Jacobsen, Sep 06 2015
Comments