cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079375 Costé prime expansion of Pi^2 - 9.

Original entry on oeis.org

2, 2, 3, 3, 5, 2, 19, 11, 29, 53, 149, 23, 7, 11, 5, 5, 3, 5, 5, 59, 11, 7, 7, 41, 19, 17, 23, 7, 5, 3, 7, 3, 11, 3, 3, 5, 2, 5, 3, 3, 53, 11, 5, 3, 41, 13, 29, 97, 13, 11, 2, 11, 5, 7, 7, 17, 5, 11, 3, 3, 7, 23, 53, 11, 5, 17, 5, 7, 3, 17
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 50 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Pi^2 - 9);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Pi^2 -9] (* G. C. Greubel, Jan 20 2019 *)

A079376 Records in A079375.

Original entry on oeis.org

2, 3, 5, 19, 29, 53, 149, 491, 1877, 52769
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079375.

Crossrefs

Programs

  • Mathematica
    A079375 = Cases[Import["https://oeis.org/A079375/b079375.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079375], i++,
      If[A079375[[i]] > l, l = A079375[[i]]; AppendTo[a, l]]];
    a (* Robert Price, Mar 14 2020 *)

Extensions

a(8)-a(10) from Robert Price, Mar 14 2020
Showing 1-2 of 2 results.