cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079378 Costé prime expansion of (sqrt(5)-1)/2.

Original entry on oeis.org

2, 5, 7, 5, 5, 2, 11, 5, 2, 13, 11, 5, 5, 5, 5, 2, 5, 3, 5, 11, 2, 79, 37, 11, 5, 3, 7, 17, 59, 23, 11, 2, 17, 7, 3, 7, 7, 383, 337, 67, 13, 19, 47, 23, 41, 17, 17, 13, 67, 71, 47, 17, 11, 19, 73, 53, 17, 13, 37, 19, 11, 5, 13, 29, 43, 47, 17, 5, 5, 11, 3, 3, 17, 5, 97, 29, 11, 3, 3, 3, 7
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F((sqrt(5)-1)/2);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[(Sqrt[5] -1)/2] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A079380 Where records occur in A079378.

Original entry on oeis.org

1, 2, 3, 7, 10, 22, 38, 111, 200, 1193
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079378.

Crossrefs

Programs

  • Mathematica
    A079378 = Cases[Import["https://oeis.org/A079378/b079378.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079378], i++,
      If[A079378[[i]] > l, l = A079378[[i]]; AppendTo[a, i]]];
    a (* Robert Price, Mar 14 2020 *)

Extensions

a(8)-a(10) from Robert Price, Mar 14 2020
Showing 1-2 of 2 results.