cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079387 Costé prime expansion of sqrt(3) - 1.

Original entry on oeis.org

2, 3, 3, 7, 5, 7, 3, 37, 7, 3, 149, 19, 41, 17, 7, 3, 11, 2, 11, 17, 23, 19, 11, 5, 3, 5, 3, 3, 5, 2, 5, 2, 23, 7, 13, 13, 19, 37, 7, 41, 29, 11, 2, 11, 3, 3, 7, 7, 3, 23, 7, 19, 11, 11, 17, 11, 7, 5, 7, 5, 5, 3, 5, 2, 5, 7, 19, 31, 19, 17, 7, 5, 11, 3, 3, 3, 103, 853, 211, 23, 19, 17, 11, 7, 5
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(sqrt(3)-1);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Sqrt[3] - 1] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A079389 Where records occur in A079387.

Original entry on oeis.org

1, 2, 4, 8, 11, 78, 623, 661, 729, 812, 993, 1088, 1318, 4250, 7041, 7499
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079387.

Crossrefs

Programs

  • Mathematica
    A079387 = Cases[Import["https://oeis.org/A079387/b079387.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079387], i++,
      If[A079387[[i]] > l, l = A079387[[i]]; AppendTo[a, i]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

More terms from Lambert Herrgesell (zero815(AT)googlemail.com), Dec 06 2005
Showing 1-2 of 2 results.