A079470 Primes with prime inventory number (as in A063850).
3, 7, 17, 23, 113, 127, 131, 137, 193, 199, 223, 233, 271, 311, 313, 331, 359, 367, 431, 433, 439, 463, 479, 499, 503, 523, 587, 607, 641, 677, 691, 733, 773, 797, 809, 821, 823, 829, 853, 997, 1009, 1069, 1123, 1129, 1187, 1213, 1217, 1223, 1231, 1277, 1291
Offset: 1
Examples
The prime 127 has inventory number 111217 (one "1", one "2", one "7"), which is also prime. Hence 127 belongs to the sequence.
Links
- Carlos Rivera, Puzzle 207. The Inventory Sequences and Self-Inventoried Numbers, The Prime Puzzles & Problems Connection.
Crossrefs
Cf. A063850.
Programs
-
Mathematica
g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; s = {}; For[j = 1, j <= 10^3, j++, temp = Prime[j]; If[PrimeQ[g[temp]], s = Append[s, temp]]]; s