A079475 Number described by n using the "Look and Say" rule.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0, 111, 222, 333, 444, 555, 666, 777, 888, 999, 0, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 0
Offset: 0
Examples
142113 can be read as one "4", two "1"s, one "3" and so describes 4113. Hence a(142113) = 4113. 123 can be read as one "2", "3" and so describes 23. (The leftover digit 3 describes itself.) Hence a(123) = 23. Note that a(1213) = 23 also. 40 can be read as four "0"s, so a(40) = 0. (Trailing zeros are ignored.) 4. a(5) = 5. A single digit describes itself.
Crossrefs
Cf. A005150.
Programs
-
Mathematica
a[n_] := Table[#[[2]], {#[[1]]}]& /@ Partition[If[EvenQ[Length[id = IntegerDigits[n]]], id, Join[Most[id], {1}, {id[[-1]]}]], 2] // Flatten // FromDigits; Table[a[n], {n, 0, 123}] (* Jean-François Alcover, Mar 02 2017 *)
-
Python
def A079475(n): s = str(n) l = len(s) if l % 2: s = s[:-1]+'1'+s[-1] return int(''.join(s[i+1]*int(s[i]) for i in range(0,l,2))) # Chai Wah Wu, Sep 01 2021
Comments