cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079492 Nearest integer to Sum_{k=0..n} binomial(n,k)/2^(k*(k-1)/2).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 17, 23, 31, 41, 52, 66, 82, 101, 124, 150, 180, 215, 254, 299, 351, 408, 473, 546, 628, 719, 820, 932, 1055, 1192, 1342, 1508, 1689, 1887, 2104, 2340, 2597, 2876, 3179, 3507, 3863, 4247, 4662, 5108, 5590, 6107, 6663, 7259, 7899, 8583, 9316, 10099
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2003

Keywords

Examples

			1, 2, 7/2, 45/8, 545/64, 12625/1024, 564929/32768, 49162689/2097152, ...
		

References

  • D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press, 1999, p. 113.

Crossrefs

Cf. A079491.

Programs

  • Magma
    [Round( (&+[Binomial(n,k)/2^(k*(k-1)/2): k in [0..n]]) ): n in [0..60]]; // G. C. Greubel, Jan 18 2019
    
  • Maple
    f := n->add(binomial(n,k)/2^(k*(k-1)/2),k=0..n);
  • Mathematica
    Table[Round[Sum[Binomial[n,k]/2^(k*(k-1)/2), {k,0,n}]], {n,0,60}] (* G. C. Greubel, Jan 18 2019 *)
  • PARI
    vector(60, n, n--; round(sum(k=0,n, binomial(n,k)/2^(k*(k-1)/2)))) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    [round(sum(binomial(n,k)/2^(k*(k-1)/2) for k in (0..30))) for n in (0..60)] # G. C. Greubel, Jan 18 2019