cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079518 Coefficients related to tennis ball problem.

Original entry on oeis.org

1, 28, 462, 6832, 97957, 1394180, 19862674, 284156608, 4086496362, 59089988216, 858975619676, 12549322976672, 184195104642157, 2715174884250004, 40181870424263146, 596810833742837536, 8893877150513222014, 132947157383427373320, 1992954280253792526660
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1- 2*t)*Sqrt[1+4*t] + Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1)*c[t]^(r+3); Drop[CoefficientList[Series[g[t, 3], {t,0,60}], t][[1;; ;;2]], 2] (* G. C. Greubel, Jan 16 2019 *)

Formula

With c(t) = (1 - sqrt(1-4*t))/(2*t), d(t) = (1 -(1+2*t)*sqrt(1-4*t) -(1 - 2*t)*sqrt(1+4*t) + sqrt(1-16*t^2))/(4*t^2), and g(t, r) = d(t)*t^(r + 1)*c(t)^(r + 3) then the g.f. is given by the even terms in the expansion of g(t,3) = 1*t^4 + 28*t^6 + 462*t^8 + 6832*t^10 + ... - G. C. Greubel, Jan 16 2019

Extensions

Terms a(5) onward added by G. C. Greubel, Jan 16 2019