cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079519 Related to tennis ball problem.

Original entry on oeis.org

12, 284, 5436, 96768, 1664184, 28069444, 467722524, 7730252080, 127023181352, 2078332922360, 33894711502744, 551368536346176, 8950922822411504, 145068948446193428, 2347940754318431196, 37957946888159573968, 613052225104703442120, 9893099103451554441736
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Examples

			G.f. = 12*t^2 + 284*t^4 + 5436*t^6 + 96768*t^8 + ... - _G. C. Greubel_, Jan 17 2019
		

Crossrefs

Programs

  • Mathematica
    f[t_]:= Sqrt[1-4*t]; g[t_]:= Sqrt[1+4*t]; S1[t_]:= (1+f[t]-2*f[t]^2)*(1- f[t])^5/(t^3*(f[t]^2-f[t])^2*(2+f[t]+g[t])^2); S3[t_]:= 4*(1-f[t])^2*(1 -g[t])^2*(f[t]^2-(1+2*t)*f[t]-(1-6*t)*g[t]+f[t]*g[t])/(t^3*(2+f[t]+ g[t])^2*(g[t]^2-f[t]-g[t]+f[t]*g[t])^2); W[t_]:= (S1[t]+S1[-t]+S3[t]+ S3[-t])/4; Drop[CoefficientList[Series[W[t], {t, 0, 50}], t][[1 ;; ;; 2]], 1] (* G. C. Greubel, Jan 17 2019 *)

Formula

Let f, g, S1 and S3 be given by f(t) = sqrt(1-4*t), g(t) = sqrt(1+4*t), S1(t) = (1+f(t)-2*f(t)^2)*(1- f(t))^5/(t^3*(f(t)^2-f(t))^2*(2+f(t)+g(t))^2), S3(t) = 4*(1-f(t))^2*(1 -g(t))^2*(f(t)^2-(1+2*t)*f(t)-(1-6*t)*g(t)+f(t)*g(t))/(t^3*(2+f(t)+ g(t))^2*(g(t)^2-f(t)-g(t)+ f(t)*g(t))^2). Now let W(t) be given by W(t) = (S1(t) + S1(-t) + S3(t) + S3(-t))/4. The g.f. is the expansion of W(t). - G. C. Greubel, Jan 17 2019

Extensions

Terms a(5) onward added by G. C. Greubel, Jan 17 2019