cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079522 Diagonal of triangular array in A079520.

Original entry on oeis.org

0, 1, 3, 10, 31, 105, 343, 1198, 4056, 14506, 50350, 183284, 647809, 2390121, 8564543, 31933830, 115664164, 434920398, 1588917802, 6016012236, 22134533070, 84289034154, 311957090678, 1193717733900, 4440128821376, 17060985356980, 63732279047612, 245768668712296, 921501110779045
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Examples

			G.f. = 0 + 1*t + 3*t^2 + 10*t^3 + 31*t^4 + ... - _G. C. Greubel_, Jan 17 2019
		

Crossrefs

Also diagonal of triangular array in A079521.

Programs

  • Maple
    F := proc(t) (1-4*t^2-(1+2*t)*sqrt(1-4*t)-(1-2*t)*sqrt(1+4*t)+ sqrt(1-16*t^2))/4/t^3 ; end: d := proc(t) 1+t*F(t) ; end: C := proc(t) (1-sqrt(1-4*t))/2/t ; end: A079521 := proc(h,r) d(t)*t^(r+1)*(C(t))^(r+3) ; expand(%) ; coeftayl(%,t=0,h) ; end: A079522 := proc(n) A079521(n,0) ; end: for n from 0 do printf("%d\n",A079522(n)) ; od: # R. J. Mathar, Sep 20 2009
  • Mathematica
    c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)* Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r*(t*c[t]^3 +2*r*c[t]); CoefficientList[Series[g[t, 0], {t, 0, 50}], t] (* G. C. Greubel, Jan 17 2019 *)

Formula

Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+ 2*t)*sqrt(1-4*t) -(1-2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and
g(t, r) = d(t)*(t*c(t))^r*(t*c(t)^3 + 2*r*c(t)) then the g.f. is given by the expansion of g(t,0). - G. C. Greubel, Jan 17 2019
a(n) ~ 2^(2*n + 1/2) * (9*sqrt(2) - 10 + (41*sqrt(2) - 58)*(-1)^n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 31 2025

Extensions

More terms from R. J. Mathar, Sep 20 2009
Terms a(23) onward added by G. C. Greubel, Jan 17 2019