A079598 a(n) = 2^(4n+1) - 2^(2n).
1, 28, 496, 8128, 130816, 2096128, 33550336, 536854528, 8589869056, 137438691328, 2199022206976, 35184367894528, 562949936644096, 9007199187632128, 144115187807420416, 2305843008139952128
Offset: 0
Links
- Petrus Bungus, Numerorum Mysteria, Taupinart, (1618). (In Latin). See p. 468.
- Uwe Hassler, Perfect Numbers, Euleriana: 3(2), pp.176-185, (2023). See pp. 177-178.
- Michael Stifel, Arithmetica integra, Joh. Petreius, (1544). (In Latin). See p. 11.
- László Tóth, Evaluating zeta(s) At Odd Positive Integers Using Automatic Dirichlet Series, arXiv:2508.04151 [math.NT], 2025.
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
Programs
-
Maple
seq(sum((2*k-1)^3,k=1..2^n),n=0..15); seq(sum(2^k,k=2*n..4*n),n=0..15);
-
PARI
a(n)=2^(4*n+1)-4^n \\ Charles R Greathouse IV, Nov 29 2011
Formula
a(n+1) = 16*a(n) + 12*2^(2n).
a(n) = Sum_{k=1..2^n} (2*k-1)^3. - Franz Vrabec, Jun 24 2006
a(n) = Sum_{k=2*n..4*n} 2^k. - Martin Renner, Mar 22 2022
G.f.: ( 1+8*x ) / ( (16*x-1)*(4*x-1) ). - R. J. Mathar, Nov 29 2011
E.g.f.: exp(4*x)*(2*exp(12*x) - 1). - Stefano Spezia, Jul 28 2024
Comments