A079600 a(n) = A000670(p-1)/p with p = prime(n+1).
1, 15, 669, 9295233, 2160889815, 312685569528315, 178186034908255017, 111949757382747408023661, 217157312584485035638564618459815, 367857057871350983346531103102738773, 3897277863558255935901648057010997772527380815
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..81
Programs
-
Maple
N:= 60: # to use primes <= N M:= numtheory:-pi(N): L:= [seq(ithprime(i+1)-1, i=1..M-1)]: S:= series(1/(2-exp(x)), x=0, N+1): seq(coeff(S,x,L[i])*L[i]!/(L[i]+1), i=1..M-1); # Robert Israel, Mar 30 2016
-
Mathematica
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[p_] := Fubini[p-1, 1]/p; Table[ a[p], {p, Prime[Range[2, 11]]}] (* Jean-François Alcover, Mar 30 2016 *)
Formula
a(n) = A052882(p)/p^2 with p = prime(n+1).