A079630 Numbers n such that |real(zeta(1/2 + n*I))| exceeds all previous values, where zeta is the Riemann zeta function.
0, 10, 17, 18, 28, 46, 63, 109, 172, 281, 417, 652, 698, 852, 1269, 1550, 3100, 4478, 6726, 7578, 9654, 9826, 10678, 14304, 30775, 45079, 57552, 74956, 105731, 248917, 289346, 340761, 407722, 440699, 457170, 682764, 795112, 849038, 874546, 1138384
Offset: 1
Keywords
Examples
|real(zeta(1/2 + 1616584*I))| ~= 44.1381
Links
- Glen Pugh, The Riemann Hypothesis in a Nutshell
- Ed Pegg Jr., The Riemann Hypothesis
Crossrefs
Cf. A002410.
Programs
-
Mathematica
a = -1; Do[b = Abs[ Re[ N[ Zeta[0.5 + n*I]]]]; If[b > a, Print[n]; a = b], {n, 0, 10^6}] DeleteDuplicates[Table[{n,Abs[Re[N[Zeta[1/2+n I]]]]},{n,0,12*10^5}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 29 2024 *)
Comments