cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079639 Matrix product of Stirling1-triangle A008275(n,k) and unsigned Lah-triangle |A008297(n,k)|.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 11, 6, 1, 14, 40, 35, 10, 1, 38, 184, 195, 85, 15, 1, 216, 840, 1204, 665, 175, 21, 1, 600, 4920, 7616, 5369, 1820, 322, 28, 1, 6240, 26616, 54116, 44016, 18669, 4284, 546, 36, 1, 9552, 197856, 392460, 383480, 191205, 54453, 9030, 870, 45, 1, 319296, 1177176, 3229776, 3449600, 2017070, 679371, 139293, 17490, 1320, 55, 1, -519312
Offset: 1

Views

Author

Vladeta Jovovic, Jan 30 2003

Keywords

Comments

Also the Bell transform of A006252(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Crossrefs

Cf. A006252 (first column).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> add(k!*combinat:-stirling1(n+1,k),k=0..n+1),9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, Sum[k!*StirlingS1[n+1, k], {k, 0, n+1}]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 27 2018, after Peter Luschny *)

Formula

T(n, k) = Sum_{i=k..n} A008275(n, i) * |A008297(i, k)|.
E.g.f: (1+x)^(y/(1-log(1+x))). - Vladeta Jovovic, Nov 22 2003