cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079642 Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and Stirling1-triangle A008275(n,k).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 4, 0, 1, 8, 5, 10, 0, 1, 26, 58, 15, 20, 0, 1, 194, 217, 238, 35, 35, 0, 1, 1142, 2035, 1008, 728, 70, 56, 0, 1, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1, 81384, 134164, 85410, 47815, 9660, 4116, 210, 120, 0, 1, 823392, 1243770, 983059
Offset: 1

Views

Author

Vladeta Jovovic, Jan 30 2003

Keywords

Comments

Also the Bell transform of A089064(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			1; 0,1; 1,0,1; 1,4,0,1; 8,5,10,0,1; 26,58,15,20,0,1; ...
		

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> add((-1)^n*(k-1)!*combinat:-stirling1(n+1, k), k=1..n+1), 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, Sum[(-1)^n*(k-1)! StirlingS1[n+1, k], {k, 1, n+1} ] ], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

T(n, k) = Sum_{i=k..n} |A008275(n, i)| * A008275(i, k).
E.g.f.: (1-log(1-x))^y. - Vladeta Jovovic, Nov 22 2003