A079642 Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and Stirling1-triangle A008275(n,k).
1, 0, 1, 1, 0, 1, 1, 4, 0, 1, 8, 5, 10, 0, 1, 26, 58, 15, 20, 0, 1, 194, 217, 238, 35, 35, 0, 1, 1142, 2035, 1008, 728, 70, 56, 0, 1, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1, 81384, 134164, 85410, 47815, 9660, 4116, 210, 120, 0, 1, 823392, 1243770, 983059
Offset: 1
Examples
1; 0,1; 1,0,1; 1,4,0,1; 8,5,10,0,1; 26,58,15,20,0,1; ...
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> add((-1)^n*(k-1)!*combinat:-stirling1(n+1, k), k=1..n+1), 9); # Peter Luschny, Jan 26 2016
-
Mathematica
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, Sum[(-1)^n*(k-1)! StirlingS1[n+1, k], {k, 1, n+1} ] ], rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Formula
E.g.f.: (1-log(1-x))^y. - Vladeta Jovovic, Nov 22 2003
Comments