A079676 LookAndSay(n) is palindromic.
1, 22, 112, 211, 333, 1113, 1221, 3111, 4444, 11114, 13331, 22122, 22233, 33222, 41111, 55555, 111115, 111223, 112112, 113332, 144441, 211211, 222133, 222244, 233311, 322111, 331222, 442222, 511111, 666666, 1111116, 1111224, 1112113
Offset: 1
Examples
LookAndSay(112) = 2112 ( two 1's, one 2), a palindrome, so 22 belongs to the sequence.
Crossrefs
Different from A079466.
Programs
-
Mathematica
RunLengthEncode[x_List] := (Through[{First, Length}[ #1 ]] &) /@ Split[x]; Do[a = Flatten[ RunLengthEncode[ IntegerDigits[n]]]; If[a == Reverse[a], Print[n]], {n, 1, 10^6}]
Extensions
More terms from Robert G. Wilson v, Jan 27 2003