A079682 Order of Burnside group B(4,n) of exponent 4 and rank n.
1, 4, 4096, 590295810358705651712
Offset: 0
Keywords
References
- Bayes, A. J.; Kautsky, J.; and Wamsley, J. W. "Computation in Nilpotent Groups (Application)." In Proceedings of the Second International Conference on the Theory of Groups. Held at the Australian National University, Canberra, August 13-24, 1973(Ed. M. F. Newman). New York: Springer-Verlag, pp. 82-89, 1974.
- Burnside, William. "On an unsettled question in the theory of discontinuous groups." Quart. J. Pure Appl. Math 33.2 (1902): 230-238.
- M. Hall, Jr., The Theory of Groups, Macmillan, 1959, Chap. 18.
- Havas, G. and Newman, M. F. "Application of Computers to Questions Like Those of Burnside." In Burnside Groups. Proceedings of a Workshop held at the University of Bielefeld, Bielefeld, June-July 1977. New York: Springer-Verlag, pp. 211-230, 1980.
- W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
- Tobin, J. J. On Groups with Exponent 4. Thesis. Manchester, England: University of Manchester, 1954.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..5
- S. V. Ivanov, On the Burnside problem for groups of even exponent, Proc. Internat. Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 67-75.
- E. A. O'Brien and M. F. Newman, Application of Computers to Questions Like Those of Burnside, II, Internat. J. Algebra Comput.6, 593-605, 1996.
- J. J. O'Connor and E. F. Robertson, History of the Burnside Problem
- Eric Weisstein's World of Mathematics, Burnside Problem
Formula
The first few terms are 2 to the powers 0, 2, 12, 69, 422, 2728, that is, 2^A116398(n).
Extensions
Entry revised by N. J. A. Sloane, Jan 12 2016 and Jan 15 2016
Comments