A116398 a(n) = log_2(B[4,n]), where B[4,n] is the order of Burnside group of exponent 4 and rank n (A079682).
0, 2, 12, 69, 422, 2728
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Burnside Problem
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
3^Table[n*(n^2 + 5)/6, {n, 0, 10}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
A051576(n):=3^(n*(n^2+5)/6)$ makelist(A051576(n),n,0,7); /* Martin Ettl, Jan 08 2013 */
B6n:=proc(n) local a,b,c; b:=1+(n-1)*2^n; c:=n+binomial(n,2)+binomial(n,3); a:=1+(n-1)*3^c; 2^a*3^(b+binomial(b,2)+binomial(b,3)); end; # N. J. A. Sloane, Jan 12 2016
Comments