cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079813 n 0's followed by n 1's.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Olivier Gérard, Feb 19 2003

Keywords

Comments

It appears that a(n) is the number of positive solutions to the equation x*floor(x) = n - 1 (for example, it appears x = 5/2 is the only positive solution to x*floor(x) = 5). - Melvin Peralta, Apr 13 2016
From Branko Curgus, Apr 25 2017: (Start)
a(n) is 0 if the nearest square to n is greater than or equal to n, otherwise 1.
a(n) is the number of positive solutions to the equation x*floor(x) = n - 1. (End)
{a(n)} interpreted as a string over {0,1} is the unique fixed-point of the function defined by f(0^n 1 s) = 1^(n-1) f(1 s) and f(1^n 0 s) = 0^n f(0 s). - Curtis Bechtel, Jun 27 2025

Examples

			x^2 + x^5 + x^6 + x^10 + x^11 + x^12 + x^17 + x^18 + x^19 + x^20 + ...
		

Programs

  • Maple
    A000194 := n->round(sqrt(n)):A079813 := n->(floor((n-1)/A000194(n))-A000194(n)+1);
  • Mathematica
    Table[{Table[0, n], Table[1, n]}, {n, 11}] // Flatten (* or *)
    Rest@ CoefficientList[Series[(x/(1 - x)) Sum[x^k^2 (1 - x^k), {k, 12}], {x, 0, 120}], x] (* or *)
    Table[Floor[(n - 1)/#] - # + 1 &@ Round[Sqrt@ n], {n, 120}] (* Michael De Vlieger, Apr 13 2016 *)
    Table[Ceiling[Sqrt[n]] - Round[Sqrt[n]], {n, 1, 257}] (* Branko Curgus, Apr 25 2017 *)
  • PARI
    {a(n) = if( n<1, 0, n--; m = sqrtint(n); n - m^2 < m)} /* Michael Somos, Nov 05 2011 */
    
  • Python
    from math import isqrt
    def A079813(n): return int((m:=isqrt(n))**2!=n)-int(n-m*(m+1)>=1) # Chai Wah Wu, Jul 30 2022

Formula

G.f.: (x / (1 - x)) * (Sum_{k>0} x^k^2 * (1 - x^k)). - Michael Somos, Nov 05 2011
a(n) = floor((n-1)/A000194(n)) - A000194(n)+1, where A000194(n) = round(sqrt(n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
a(n+1) = 1 - A118175(n). - Philippe Deléham, Jan 02 2012
a(n) = ceiling(sqrt(n)) - round(sqrt(n)). - Branko Curgus, Apr 26 2017