A079850 a(1) = 1 and then the smallest primes such that all a(k)-a(j) are distinct composite numbers.
1, 5, 11, 19, 31, 47, 71, 103, 151, 227, 277, 389, 463, 541, 599, 733, 797, 887, 1087, 1217, 1361, 1579, 1693, 1861, 2129, 2267, 2887, 3137, 3301, 3389, 3967, 4133, 4567, 4801, 5021, 5581, 5879, 6983, 7027, 7333, 8123, 8677, 8971, 9949, 10289, 10937
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
CompositeQ[n_] := ! (Abs[n] == 1 || PrimeQ[n]);f[l_List] := Block[{pi = 1, d = Subtract @@@ Subsets[l, {2}], p},While[p = Prime[pi]; Intersection[d, l - p] != {} || Nand @@ (CompositeQ /@ (l - p)), pi++ ];Append[l, p]];Nest[f, {1}, 46] (* Ray Chandler, Feb 12 2007 *)
Extensions
Extended by Ray Chandler, Feb 12 2007