cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079883 a(1) = 1; a(n) = prime(n) - prime(n-1)* a(n-1) if n > 1.

Original entry on oeis.org

1, 1, 2, -3, 32, -339, 4424, -75189, 1428614, -32858093, 952884728, -29539426531, 1092958781688, -44811310049165, 1926886332114142, -90563657609364621, 4799873853296324972, -283192557344483173287, 17274745998013473570574, -1157407981866902729228387
Offset: 1

Views

Author

Joseph L. Pe, Feb 20 2003

Keywords

Comments

1. Let s(n) be a sequence such that lim s(n)/s(n+1) = K different from -1. The "oscillator sequence" (or simply "oscillator") of s(n) is the sequence s'(n) defined by the rules: s'(1) = 1; s'(n) = 1 - (s(n-1)/s(n)) s'(n-1). 2. It is an open problem whether the oscillator (prime)' converges to 1/2 or diverges. 3. For s(n) = prime(n), one has s'(n) = 1 - (p(n-1)/p(n)) s'(n-1) = [p(n) - p(n-1) s'(n-1)]/p(n). The numerator is the expression p(n) - p(n-1) s'(n-1), which motivates the definition of the above sequence a(n). a(n) is called the "integral oscillator" of prime(n). In general the integral oscillator of s(n) can be defined similarly.

Crossrefs

Cf. A069942.

Programs

  • Mathematica
    t = {1}; gt = 1; For[i = 2, i <= 24, i++, gt = Prime[i] - Prime[i - 1] gt; t = Append[t, gt]]; t ListPlot[t, PlotJoined -> True]