cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079904 Triangle read by rows: T(n, k) = n*k, 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 0, 3, 6, 9, 0, 4, 8, 12, 16, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 36, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 64, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2003

Keywords

Comments

See the comment in A025581 on a problem posed by François Viète (Vieta) 1593, where this triangle is related to A025581 and A257238. - Wolfdieter Lang, May 12 2015

Examples

			Triangle T(n, k) begins:
  n\k 0  1  2  3  4  5  6  7  8  9  10 ...
  0:  0
  1:  0  1
  2:  0  2  4
  3:  0  3  6  9
  4:  0  4  8 12 16
  5:  0  5 10 15 20 25
  6:  0  6 12 18 24 30 36
  7:  0  7 14 21 28 35 42 49
  8:  0  8 16 24 32 40 48 56 64
  9:  0  9 18 27 36 45 54 63 72 81
  10: 0 10 20 30 40 50 60 70 80 90 100
  ... - _Wolfdieter Lang_, May 12 2015
		

Crossrefs

Cf. A075362 (without column k=0), A002411 (row sums), A001105 (central terms).

Programs

  • Maple
    seq(seq(n*k, k=0..n), n=0..10); # Robert Israel, May 12 2015
  • Mathematica
    Array[Range[0, #^2, #] &, 15, 0] (* Paolo Xausa, Mar 27 2025 *)
  • PARI
    row(n) = vector(n+1, i, (i-1)*n); \\ Amiram Eldar, May 12 2025

Formula

T(n, k) = n*k, 0 <= k <= n.
T(n, k) = if k = 0 then 0 else T(n, k-1) + n.
T(n, 0) = 1. T(n, 1) = n for n > 0.
T(n, 2) = A005843(n) for n > 1.
T(n, 3) = A008585(n) for n > 2.
T(n, 4) = A008586(n) for n > 3.
T(n, n-2) = A005563(n-1) for n > 1.
T(n, n-1) = A002378(n-1) for n > 0.
T(n, n) = A000290(n).
T(n, k) = (A257238(n, k) - A025581(n, k)^3) / (3*A025581(n, k)). See the Viète comment above. - Wolfdieter Lang, May 12 2015
From Robert Israel, May 12 2015: (Start)
G.f. as triangle: (1 + x*y - 2*x^2*y)*x*y/((1 - x)^2*(1 - x*y)^3).
G.f. as sequence: -(Sum_{n>=0} (n^2 - n)*x^(n*(n + 1)/2)) / (1 - x) + (Sum_{n>=1} x^(n*(n + 1)/2)) * x/(1 - x)^2. These sums are related to Jacobi Theta functions. (End)
T(n, k) = gcd(n, k) * lcm(n, k). - Peter Luschny, Mar 26 2025