cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079915 Solution to the Dancing School Problem with 10 girls and n+10 boys: f(10,n).

Original entry on oeis.org

1, 11, 596, 9627, 103129, 780902, 4557284, 21670160, 87396728, 308055528, 971055240, 2780440664, 7324967640, 17945144328, 41249101928, 89635336440, 185317652664, 366517590440, 696695849928
Offset: 0

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

References

  • Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.

Crossrefs

Programs

  • Maple
    f:= n-> n^10 -35*n^9 +675*n^8 -8610*n^7 +78435*n^6 -523467*n^5 +2562525*n^4 -9008160*n^3 +21623220*n^2 -31840760*n +21750840: seq(f(i), i=8..21);

Formula

for n>=8: a(n) = n^10 -35*n^9 +675*n^8 -8610*n^7 +78435*n^6 -523467*n^5 +2562525*n^4 -9008160*n^3 +21623220*n^2 -31840760*n +21750840.

Extensions

Corrected by Jaap Spies, Feb 01 2004