A079915 Solution to the Dancing School Problem with 10 girls and n+10 boys: f(10,n).
1, 11, 596, 9627, 103129, 780902, 4557284, 21670160, 87396728, 308055528, 971055240, 2780440664, 7324967640, 17945144328, 41249101928, 89635336440, 185317652664, 366517590440, 696695849928
Offset: 0
Keywords
References
- Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Links
- Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
- Jaap Spies, Dancing School Problems, Permanent solutions of Problem 29.
- Jaap Spies, Sage program for computing A079915.
- Jaap Spies, Sage program for computing the polynomial a(n).
- Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
Programs
-
Maple
f:= n-> n^10 -35*n^9 +675*n^8 -8610*n^7 +78435*n^6 -523467*n^5 +2562525*n^4 -9008160*n^3 +21623220*n^2 -31840760*n +21750840: seq(f(i), i=8..21);
Formula
for n>=8: a(n) = n^10 -35*n^9 +675*n^8 -8610*n^7 +78435*n^6 -523467*n^5 +2562525*n^4 -9008160*n^3 +21623220*n^2 -31840760*n +21750840.
Extensions
Corrected by Jaap Spies, Feb 01 2004
Comments