A080020 Primes of the form 9k^2 + 3k + 367, where k can be negative.
367, 373, 379, 397, 409, 439, 457, 499, 523, 577, 607, 673, 709, 787, 829, 919, 967, 1069, 1123, 1237, 1297, 1423, 1489, 1627, 1699, 2089, 2347, 2437, 2719, 2917, 3019, 3229, 3559, 3673, 3907, 4027, 4273, 4657, 4789, 5059, 5197, 5479, 5623, 6067, 6373
Offset: 1
Examples
Given k = -2, we have 9 * 4 - 3 * 2 + 367 = 36 - 6 + 367 = 397 (a prime). Given k = -1, we have 9 - 3 + 367 = 373 (a prime). Given k = 0, we have 367 (a prime). Given k = 1, we have 9 + 3 + 367 = 379 (a prime). Given k = 2, we have 9 * 4 + 3 * 2 + 367 = 36 + 6 + 367 = 409 (a prime).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A005846.
Programs
-
Mathematica
Union[Select[Table[9n^2 + 3n + 367, {n, -30, 30}], PrimeQ]] (* Harvey P. Dale, Mar 23 2013 *)
Formula
From Alonso del Arte, Nov 16 2017: (Start)
((6n - 1)^2 + 1467)/4 = (36n^2 - 12n + 1468)/2 = 9n^2 - 3n + 367.
((6n + 1)^2 + 1467)/4 = (36n^2 + 12n + 1468)/2 = 9n^2 + 3n + 367. (End)
Extensions
Edited by Dean Hickerson, Jan 20 2003
New definition from Charles R Greathouse IV, Feb 15 2011
Comments