cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080020 Primes of the form 9k^2 + 3k + 367, where k can be negative.

Original entry on oeis.org

367, 373, 379, 397, 409, 439, 457, 499, 523, 577, 607, 673, 709, 787, 829, 919, 967, 1069, 1123, 1237, 1297, 1423, 1489, 1627, 1699, 2089, 2347, 2437, 2719, 2917, 3019, 3229, 3559, 3673, 3907, 4027, 4273, 4657, 4789, 5059, 5197, 5479, 5623, 6067, 6373
Offset: 1

Views

Author

T. Amdeberhan, Jan 20 2003

Keywords

Comments

Original definition: Primes of the form q(n) = 370 + 18*binomial(ceiling(n/2), 2) + 3*(-1)^n*(2*ceiling(n/2) - 1).
The smallest positive k for which q(k) is not prime is k = 26.
Every q(k) is a divisor of some value of e(x) = x^2 + x + 41, the Euler prime-generating polynomial. Specifically, e(3*k^2 - 2*k + 122) = q(2*k) * e(k-1) and e(3*k^2 + 2*k + 122) = q(2*k + 1) * e(k).
Also primes of the form (k^2 + 1467)/4 with k odd. These primes are composite in O_Q(sqrt(-163)), since they can be expressed as (k/2 - 3*sqrt(-163))*(k/2 + 3*sqrt(-163)). For example, (7/2 - 3*sqrt(-163)/2)(7/2 + 3*sqrt(-163)/2) = 379. - Alonso del Arte, Nov 15 2017

Examples

			Given k = -2, we have 9 * 4 - 3 * 2 + 367 = 36 - 6 + 367 = 397 (a prime).
Given k = -1, we have 9 - 3 + 367 = 373 (a prime).
Given k = 0, we have 367 (a prime).
Given k = 1, we have 9 + 3 + 367 = 379 (a prime).
Given k = 2, we have 9 * 4 + 3 * 2 + 367 = 36 + 6 + 367 = 409 (a prime).
		

Crossrefs

Cf. A005846.

Programs

  • Mathematica
    Union[Select[Table[9n^2 + 3n + 367, {n, -30, 30}], PrimeQ]] (* Harvey P. Dale, Mar 23 2013 *)

Formula

From Alonso del Arte, Nov 16 2017: (Start)
((6n - 1)^2 + 1467)/4 = (36n^2 - 12n + 1468)/2 = 9n^2 - 3n + 367.
((6n + 1)^2 + 1467)/4 = (36n^2 + 12n + 1468)/2 = 9n^2 + 3n + 367. (End)

Extensions

Edited by Dean Hickerson, Jan 20 2003
New definition from Charles R Greathouse IV, Feb 15 2011