A080032 a(n) is taken to be the smallest positive integer not already present which is consistent with the condition "n is a member of the sequence if and only if a(n) is even".
0, 2, 4, 1, 6, 7, 8, 10, 12, 11, 14, 16, 18, 15, 20, 22, 24, 19, 26, 28, 30, 23, 32, 34, 36, 27, 38, 40, 42, 31, 44, 46, 48, 35, 50, 52, 54, 39, 56, 58, 60, 43, 62, 64, 66, 47, 68, 70, 72, 51, 74, 76, 78, 55, 80, 82, 84, 59, 86, 88, 90, 63, 92, 94, 96, 67, 98, 100, 102, 71, 104
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Programs
-
Mathematica
CoefficientList[Series[x*(-3*x^10 + 2*x^9 - x^8 + 8*x^6 + 3*x^4 + 6*x^3 + x^2 + 4*x + 2)/(x^8 - 2*x^4 + 1), {x, 0, 120}], x] (* Michael De Vlieger, Dec 17 2024 *)
Formula
For n >= 4 a(n) is given by: a(4m)=6m, a(4m+1)=4m+3, a(4m+2)=6m+2, a(4m+3)=6m+4.
From Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 2*a(n-4) - a(n-8) for n > 11.
G.f.: x*(-3*x^10 + 2*x^9 - x^8 + 8*x^6 + 3*x^4 + 6*x^3 + x^2 + 4*x + 2)/(x^8 - 2*x^4 + 1). (End)
Extensions
More terms from Matthew Vandermast, Mar 21 2003
Comments