A080034 a(n) is taken to be the smallest positive integer not already present which is consistent with the condition "n is a member of the sequence if and only if a(n) is congruent to 3 mod 4".
1, 3, 4, 7, 11, 6, 15, 19, 9, 23, 12, 27, 31, 14, 35, 39, 17, 43, 20, 47, 51, 22, 55, 59, 25, 63, 28, 67, 71, 30, 75, 79, 33, 83, 36, 87, 91, 38, 95, 99, 41, 103, 44, 107, 111, 46, 115, 119, 49, 123, 52, 127, 131, 54, 135, 139, 57, 143, 60, 147, 151, 62, 155, 159, 65, 163
Offset: 0
Links
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
Crossrefs
Equals A080033(n+1)-1.
Formula
From Chai Wah Wu, Sep 27 2016: (Start)
a(n) = 2*a(n-8) - a(n-16) for n > 15.
G.f.: (x^15 + 5*x^14 + 2*x^13 + 9*x^12 + 13*x^11 + 4*x^10 + 17*x^9 + 7*x^8 + 19*x^7 + 15*x^6 + 6*x^5 + 11*x^4 + 7*x^3 + 4*x^2 + 3*x + 1)/(x^16 - 2*x^8 + 1). (End)
Extensions
More terms from Matthew Vandermast, Mar 23 2003