A080070 Decimal encoding of parenthesizations produced by simple iteration starting from empty parentheses and where each successive parenthesization is obtained from the previous by reflecting it as a general tree/parenthesization, then adding an extra stem below the root and then reflecting the underlying binary tree.
0, 10, 1010, 101100, 10110010, 1011100100, 101100110100, 10111001001100, 1011100110100010, 101110011010011000, 10110011101001100010, 1011110010011011000100, 101100111011010001100100
Offset: 0
Examples
This demonstrates how to get the fourth term 10110010 from the 3rd term 101100. The corresponding binary and general trees plus parenthesizations are shown. The first operation reflects the general tree, the second adds a new stem under the root and the third reflects the underlying binary tree, which induces changes on the corresponding general tree: .............................................. .....\/................\/\/..........\/\/..... ......\/......\/\/......\/............\/...... .....\/........\/........\/..........\/....... ......(A057164).(A057548)..(A057163).......... ........................o..................... ........................|..................... ........o.....o.........o...o.........o....... ........|.....|..........\./..........|....... ....o...o.....o...o.......o.........o.o.o..... .....\./.......\./........|..........\|/...... ......*.........*.........*...........*....... ..[()(())]..[(())()]..[((())())]..[()(())()].. ...101100....110010....11100100....10110010...
Links
- A. Karttunen, Illustration of initial terms
- A. Karttunen, Python program for computing this sequence.
- A. Karttunen, Terms a(1)-a(256) plotted as a Wolframesque triangle.
- A. Karttunen, Terms a(1)-a(512) plotted as a Wolframesque triangle.
Comments