cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080118 Intersection of A080117 and A014486.

Original entry on oeis.org

2, 10, 52, 738, 2866, 4023888, 921787428, 48034443442, 68055676507664, 210067141980993186, 1170565600000913519680, 257265188079961379006564, 3380147659553723806281906, 4190418227928183517574537416244
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2003

Keywords

Crossrefs

a(n) = A014486(A080119(n)). Same sequence in binary: A080120.

Programs

A215406 A ranking algorithm for the lexicographic ordering of the Catalan families.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4
Offset: 0

Views

Author

Peter Luschny, Aug 09 2012

Keywords

Comments

See Antti Karttunen's code in A057117. Karttunen writes: "Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES (Kreher and Stinson) book."
For all n>0, a(A014486(n)) = n = A080300(A014486(n)). The sequence A080300 differs from this one in that it gives 0 for those n which are not found in A014486. - Antti Karttunen, Aug 10 2012

Crossrefs

Programs

  • Maple
    A215406 := proc(n) local m,a,y,t,x,u,v;
    m := iquo(A070939(n), 2);
    a := A030101(n);
    y := 0; t := 1;
    for x from 0 to 2*m-2 do
        if irem(a, 2) = 1 then y := y + 1
        else u := 2*m - x;
             v := m-1 - iquo(x+y,2);
             t := t + A037012(u,v);
             y := y - 1 fi;
        a := iquo(a, 2) od;
    A014137(m) - t end:
    seq(A215406(i),i=0..199); # Peter Luschny, Aug 10 2012
  • Mathematica
    A215406[n_] := Module[{m, d, a, y, t, x, u, v}, m = Quotient[Length[d = IntegerDigits[n, 2]], 2]; a = FromDigits[Reverse[d], 2]; y = 0; t = 1; For[x = 0, x <= 2*m - 2, x++, If[Mod[a, 2] == 1, y++, u = 2*m - x; v = m - Quotient[x + y, 2] - 1; t = t - Binomial[u - 1, v - 1] + Binomial[u - 1, v]; y--]; a = Quotient[a, 2]]; (1 - I*Sqrt[3])/2 - 4^(m + 1)*Gamma[m + 3/2]*Hypergeometric2F1[1, m + 3/2, m + 3, 4]/(Sqrt[Pi]*Gamma[m + 3]) - t]; Table[A215406[n] // Simplify, {n, 0, 86}] (* Jean-François Alcover, Jul 25 2013, translated and adapted from Peter Luschny's Maple program *)
  • Sage
    def A215406(n) : # CatalanRankGlobal(n)
        m = A070939(n)//2
        a = A030101(n)
        y = 0; t = 1
        for x in (1..2*m-1) :
            u = 2*m - x; v = m - (x+y+1)/2
            mn = binomial(u, v) - binomial(u, v-1)
            t += mn*(1 - a%2)
            y -= (-1)^a
            a = a//2
        return A014137(m) - t

A080120 Dyck path encodings of Legendre's candelabras formed for primes in A080114. (I.e., symmetric rooted plane trees constructed from their quadratic residue sets.)

Original entry on oeis.org

10, 1010, 110100, 1011100010, 101100110010, 1111010110011001010000, 110110111100010101110000100100, 101100101111000100110111000010110010, 1111011110010101110010011011000101011000010000
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2003

Keywords

Comments

For the 2nd, 5th and 8th term of the sequence, the quadratic residue set of the corresponding prime (5,13,37, of the form 4k+1) has been converted from symmetric to complementarily symmetric as 1001->1010, 101100001101->101100110010, 101100101111000100001000111101001101->101100101111000100110111000010110010, for the others (of the form 4k+3), it is the quadratic residue set encoded as in A055094 (with +1 mapped to 1 and -1 to 0).

Crossrefs

Same sequence in decimal: A080118. Cf. A080114.

Programs

Formula

a(n) = A063171(A080119(n)).
Showing 1-3 of 3 results.