A080142 Greedy frac multiples of 1/Pi: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=1/Pi, where "frac(y)" denotes the fractional part of y.
1, 2, 22, 44, 66, 88, 110, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 104348, 104703, 105058, 105413, 105768, 208696, 209051, 312689, 313044, 417037
Offset: 1
Keywords
Examples
a(3) = 22 since frac(1x) + frac(2x) + frac(22x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<22.
Programs
-
Maple
Digits := 1000: a := []: s := 0: x := evalf(1.0/Pi): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
-
Mathematica
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, fps = Plus @@ Table[FractionalPart[a[i]*Pi^-1], {i, n - 1}]}, While[fps + FractionalPart[k*Pi^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 40}] (* Robert G. Wilson v, Nov 03 2004 *)
Comments