A337249
Numbers k for which csc(k) > k.
Original entry on oeis.org
1, 3, 44, 710, 1420, 2130, 2840, 312689, 10838702, 6167950454, 21053343141, 63160029423, 105266715705
Offset: 1
csc(1) = 1.1884... so 1 is a term.
-
Select[Range[10^6], Csc[#] > # &] (* Amiram Eldar, Aug 21 2020 *)
-
isok(m) = 1/sin(m) > m; \\ Michel Marcus, Aug 27 2020
-
import math
i = 1
while True:
if 1 / math.sin(i) > i:
print(i)
i += 1
A080157
Greedy frac multiples of gamma: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=gamma, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 2, 7, 9, 26, 52, 149, 272, 395, 790, 1185, 1580, 5653, 10911, 16169, 26685, 58628, 85313, 117256, 175884, 559595, 2179752, 5420066
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 7 since frac(1x) + frac(2x) + frac(7x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<7.
A080158
Greedy frac multiples of Catalan's constant, G: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=G, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 11, 107, 10579, 21158, 53014, 106028, 625708, 721157, 1442314, 2163471, 2884628, 3605785, 4326942
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 107 since frac(1x) + frac(11x) + frac(107x) < 1, while frac(1x) + frac(11x) + frac(k*x) > 1 for all k>11 and k<107.
Showing 1-3 of 3 results.
Comments