cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080153 a(1)=2, a(2)=3; a(n) for n>2 is the first prime > a(n-1) such that the concatenation of a(n-1), a(n-2) and a(n) is also prime.

Original entry on oeis.org

2, 3, 11, 23, 31, 41, 59, 79, 97, 107, 113, 151, 163, 179, 197, 223, 227, 241, 257, 271, 337, 383, 433, 439, 467, 491, 547, 619, 773, 797, 853, 883, 887, 911, 967, 977, 1069, 1129, 1187, 1223, 1291, 1297, 1409, 1483, 1489, 1523, 1559, 1567, 1579, 1607, 1619
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003

Keywords

Examples

			E.g. a(3) is the smallest prime > a(2)=3 which, when concatenated to 23 (which is the concatenation of a(1) and a(2)) gives a prime. Thus a(3)=11 because 235 and 237 are composite.
		

Crossrefs

Cf. A073640.

Programs

  • Maple
    with(numtheory): pout := [2,3]: nout := [1,2]: for n from 3 to 1000 do: p := ithprime(n): d := parse(cat(pout[nops(pout)-1],pout[nops(pout)],p)): if (isprime(d)) then pout := [op(pout),p]: nout := [op(nout),n]: fi: od: pout;
  • Mathematica
    a[1] = 2; a[2] = 3; a[n_] := a[n] = SelectFirst[Prime@ Range[#, 10^3 + #] &[PrimePi@ a[n - 1] + 1], PrimeQ@ FromDigits@ Join[IntegerDigits@ a[n - 2], IntegerDigits@ a[n - 1], IntegerDigits@ #] &]; Array[a, 51] (* Version 10, or *)
    a[1] = 2; a[2] = 3; a[n_] := a[n] = Block[{p = PrimePi@ a[n - 1] + 1},
    While[! PrimeQ@ FromDigits@ Join[IntegerDigits@ a[n - 2], IntegerDigits@ a[n - 1], IntegerDigits@ p], p = NextPrime@ p]; p]; Array[a, 51] (* Michael De Vlieger, Aug 15 2016 *)

Extensions

Edited by Charles R Greathouse IV, Apr 26 2010
Edited by Zak Seidov, Aug 15 2016