A080164 Wythoff difference array, D={d(i,j)}, by antidiagonals.
1, 2, 3, 5, 7, 4, 13, 18, 10, 6, 34, 47, 26, 15, 8, 89, 123, 68, 39, 20, 9, 233, 322, 178, 102, 52, 23, 11, 610, 843, 466, 267, 136, 60, 28, 12, 1597, 2207, 1220, 699, 356, 157, 73, 31, 14, 4181, 5778, 3194, 1830, 932, 411, 191, 81, 36, 16, 10946, 15127, 8362, 4791, 2440
Offset: 1
Examples
Northwest corner: 1 2 5 13 34 89 3 7 18 47 123 322 4 10 26 68 178 466 6 15 39 102 267 699 8 20 52 136 356 932 9 23 60 157 411 1076
References
- Clark Kimberling, The Wythoff difference array, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 153-158.
Links
- Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Visions, Games of No Chance 5 (2017) Vol. 70, See p. 65.
- Clark Kimberling, Interspersions
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
(* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = 1 + GoldenRatio; f[n_] := Floor[n*x] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A080164 as an array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A080164 as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011, added here by Clark Kimberling, Jun 03 2011 *)
Formula
d(i, j)=[i*tau]F(2j-1)+(i-1)F(2j-2), where F=A000045 (Fibonacci numbers). d(i, j)=[tau*d(i, j-1)]+d(i, j-1) for i>=2. d(i, j)=3d(i, j-1)-d(i, j-2) for i>=3.
Comments