cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080191 Primes p such that p is the largest of all prime factors of the numbers between the prime preceding 2*p and the next prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 269, 271, 277, 281, 283, 293, 307, 313
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Complement of A080192 relative to A000040.
From Flávio V. Fernandes, May 26 2021: (Start)
Equivalently, primes p such that p is the largest of all prime factors of the numbers in the interval [2*p, nextprime(2*p)-1].
For any prime p, if p is not the largest of all prime factors of the numbers in that interval (i.e., if p is not a term of this sequence), then the largest of all prime factors of the numbers in that interval will be a prime q that occurs in the number 2*q.
For all n, the largest prime < 2*a(n) is a term of A059788. (End)

Examples

			5 is a term since 7 is the prime preceding 2*5, 11 is the next prime and 5 is the largest of all prime factors of 8, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], PrimeQ[#] && NextPrime[2*#] < 2 * NextPrime[#] &] (* Amiram Eldar, Feb 07 2020 *)
  • PARI
    {forprime(k=2,317,p=precprime(2*k); q=nextprime(p+1); m=0; for(j=p+1,q-1,f=factor(j); a=f[matsize(f)[1],1]; if(m
    				

Formula

f(precprime(2*p)) = p, where f is the mapping defined by A052248.