A080232 Triangle T(n,k) of differences of pairs of consecutive terms of triangle A071919.
1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 2, -2, -3, -1, 1, 4, 5, 0, -5, -4, -1, 1, 5, 9, 5, -5, -9, -5, -1, 1, 6, 14, 14, 0, -14, -14, -6, -1, 1, 7, 20, 28, 14, -14, -28, -20, -7, -1, 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, -1
Offset: 0
Examples
Rows begin 1; 1, -1; 1, 0, -1; 1, 1, -1, -1; 1, 2, 0, -2, -1; 1, 3, 2, -2, -3, -1; 1, 4, 5, 0, -5, -4, -1; 1, 5, 9, 5, -5, -9, -5, -1; 1, 6, 14, 14, 0, -14, -14, -6, -1; 1, 7, 20, 28, 14, -14, -28, -20, -7, -1; 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, -1;
Links
- T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018). See p. 8.
- Pedro J. Miana, Hideyuki Ohtsuka, Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
Programs
-
Maple
T(n,k):=piecewise(n=0,1,n>0,binomial(n-1,k)-binomial(n-1,k-1)) # Mircea Merca, Apr 28 2012
Formula
T(n, k) = binomial(n, k) + 2*Sum{j=1...k} (-1)^j binomial(n, k-j).
Sum_{k=0..n} T(n, k)*x^k = (1-x)*(1+x)^(n-1), for n >= 1. - Philippe Deléham, Sep 05 2005
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(n,0)=1, T(n,n)=-1 for n > 0. - Philippe Deléham, Nov 01 2011
T(n,k) =binomial(n-1,k) - binomial(n-1,k-1), for n > 0. T(n,k) = Sum_{i=-k..k} (-1)^i*binomial(n-1,k+i)*binomial(n+1,k-i), for n >= k. T(n,k)=0, for n < k. - Mircea Merca, Apr 28 2012
G.f.: (-1+2*x*y)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015
Comments