A080343 a(n) = round(sqrt(2*n)) - floor(sqrt(2*n)).
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Programs
-
Python
from gmpy2 import isqrt_rem def A080343(n): i, j = isqrt_rem(2*n) return int(4*(j-i) >= 1) # Chai Wah Wu, Aug 16 2016
Formula
Runs are 0^1, 0^1, 0^2 1, 0^2 1, 0^3 1^2, 0^3 1^2, 0^4 1^3, 0^4 1^3, ...
a(n) = 1 iff n >= 4 and n is in the interval [t_k + 1, ..., t_k + floor(k/2)] for some k >= 2, where t_k = k*(k+1)/2 is a triangular number.
a(n) = A023969(2*n). - Michel Marcus, Aug 19 2016