A080360 a(n) is the largest positive integer x such that the number of unitary-prime-divisors of x! equals n. Same as the largest positive integer x such that the number of primes in (x/2,x] equals n.
10, 16, 28, 40, 46, 58, 66, 70, 96, 100, 106, 126, 148, 150, 166, 178, 180, 226, 228, 232, 238, 240, 262, 268, 280, 306, 310, 346, 348, 366, 372, 400, 408, 418, 430, 432, 438, 460, 486, 490, 502, 568, 570, 586, 592, 598, 600, 606, 640, 642, 646, 652, 658, 676
Offset: 1
Keywords
Examples
n=5: in 46! five unitary-prime-divisors[UPD] appear: {29,31,37,41,43}. In larger factorials number of UPD is not more equal 5. Thus a(5)=46.
References
- S. Ramanujan, Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson), Amer. Math. Soc., Providence, 2000, pp. 208-209.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- J. Sondow, Ramanujan Prime in MathWorld
- J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld
- J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635; arXiv:0907.5232 [math.NT], 2009-2010.
- Wikipedia, Ramanujan prime
Programs
-
Mathematica
nn = 60; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3*nn]}]; Rest[R] (* Jean-François Alcover, Dec 02 2018, after T. D. Noe in A104272 *)
Formula
a(n) = Max{x; Pi[x]-Pi[x/2]=n} = Max{x; A056171(x)=n} = Max{x; A056169(n!)=n}; where Pi()=A000720().
a(n) = A104272(n+1) - 1. [Jonathan Sondow, Aug 11 2008]
Extensions
Definition corrected by Jonathan Sondow, Aug 10 2008