cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080379 Least n such that n consecutive values in A080378 equals 2; i.e., exactly n differences between consecutive primes give residues 2 when divided by 4.

Original entry on oeis.org

5, 2, 9, 15, 39, 32, 305, 51, 2631, 3685, 170, 1156, 8775, 98, 5295, 41914, 106469, 167115, 186917, 1098776, 187784, 976193, 1166047, 423098, 77442332, 2643158, 11004239, 36330320, 259652255, 307899596, 2573725031, 411764049, 4080634008, 14841740642, 6022532018, 17035372732, 35045523209
Offset: 1

Views

Author

Labos Elemer, Mar 04 2003

Keywords

Comments

a(43) = 147618899630. - Donovan Johnson

Examples

			n=4: a(4)=15,differences between {47,53,59,61,67} are {6,6,2,6} corresponds to exactly four differences congruent to 2 mod 4,since before and after 47-43=4 or 71-67=4 are congruent to 0 mod 4.
		

Crossrefs

Programs

  • Mathematica
    dp[x_] := Mod[Prime[x+1]-Prime[x], 4] pat[x_, h_] := Table[dp[x+j], {j, 0, h-1}] up[x_, h_] := Union[pat[x, h]] Table[fa=1; k=0; Do[s=up[n, h]; s1=Length[s]; s2=Part[u=pat[n+1, h], Length[u]]; s3=Part[w=pat[n-1, h], 1]; If[Equal[s1, 1]&&Equal[fa, 1]&&Equal[s2, 0]&&Equal[s3, 0], k=k+1; Print[{k, h, n, Prime[n], s, s1}]; fa=0], {n, 2, 200000}], {h, 1, 19}]
    With[{c=Mod[Differences[Prime[Range[12*10^5]]],4]},Join[{5,2},Drop[ Flatten[ Table[ SequencePosition[ c,Join[ {0},PadRight[ {},n,2],{0}],1][[All,1]],{n,0,25}]]+1,3]]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Dec 01 2022 *)

Formula

a(n)=Min{x; Union[{Mod[A001223(x), 4], ..., Mod[A001223(x+n-1), 4]}]=2}

Extensions

a(20)-a(37) from Donovan Johnson, Nov 16 2010