cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080381 Triangle read by rows: gcd(binomial(n,floor(n/2)), binomial(n,i)), i=0..n; greatest common divisor of binomial coefficients and corresponding central binomial coefficient.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 2, 5, 20, 5, 2, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 2, 14, 14, 70, 14, 14, 2, 1, 1, 9, 18, 42, 126, 126, 42, 18, 9, 1, 1, 2, 9, 12, 42, 252, 42, 12, 9, 2, 1, 1, 11, 11, 33, 66, 462, 462, 66, 33, 11, 11, 1, 1, 12, 66, 44, 33, 132, 924, 132, 33, 44, 66, 12, 1
Offset: 0

Views

Author

Labos Elemer, Mar 12 2003

Keywords

Comments

The matrix inverse starts
1;
-1,1;
1,-2,1;
-1,3,-3,1;
-3,4,0,-2,1;
19,-35,20,0,-5,1;
-7,-2,15,-10,5,-2,1;
55,21,-147,105,-35,7,-7,1
-67,180,-168,56,0,0,0,-2,1; - R. J. Mathar, Mar 21 2013

Examples

			Triangle begins:
1
1 1
1 2 1
1 3 3 1
1 2 6 2 1
1 5 10 10 5 1
1 2 5 20 5 2 1
1 7 7 35 35 7 7 1
		

Crossrefs

Programs

  • Maple
    A080381 := proc(n,k)
        if k < 0 or k > n then
            0;
        else
            igcd(binomial(n,floor(n/2)), binomial(n,k)) ;
        end if;
    end proc: # R. J. Mathar, Mar 21 2013
  • Mathematica
    Flatten[Table[Table[GCD[Binomial[n, j], Binomial[n, Floor[n/2]]], {j, 0, n}], {n, 0, 10}]]
  • PARI
    T(n, k) = gcd(binomial(n, n\2), binomial(n, k)); \\ Michel Marcus, Sep 03 2019

Extensions

More terms from Michel Marcus, Sep 03 2019