A080381 Triangle read by rows: gcd(binomial(n,floor(n/2)), binomial(n,i)), i=0..n; greatest common divisor of binomial coefficients and corresponding central binomial coefficient.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 2, 5, 20, 5, 2, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 2, 14, 14, 70, 14, 14, 2, 1, 1, 9, 18, 42, 126, 126, 42, 18, 9, 1, 1, 2, 9, 12, 42, 252, 42, 12, 9, 2, 1, 1, 11, 11, 33, 66, 462, 462, 66, 33, 11, 11, 1, 1, 12, 66, 44, 33, 132, 924, 132, 33, 44, 66, 12, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 3 3 1 1 2 6 2 1 1 5 10 10 5 1 1 2 5 20 5 2 1 1 7 7 35 35 7 7 1
Programs
-
Maple
A080381 := proc(n,k) if k < 0 or k > n then 0; else igcd(binomial(n,floor(n/2)), binomial(n,k)) ; end if; end proc: # R. J. Mathar, Mar 21 2013
-
Mathematica
Flatten[Table[Table[GCD[Binomial[n, j], Binomial[n, Floor[n/2]]], {j, 0, n}], {n, 0, 10}]]
-
PARI
T(n, k) = gcd(binomial(n, n\2), binomial(n, k)); \\ Michel Marcus, Sep 03 2019
Extensions
More terms from Michel Marcus, Sep 03 2019
Comments