A080386 Numbers k such that there are exactly 8 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 8.
25, 37, 169, 199, 201, 241, 397, 433, 547, 685, 865, 1045, 1081, 1585, 1657, 1891, 1951, 1969, 2071, 2143, 2647, 2901, 3011, 3025, 3097, 3151, 3251, 3421, 3511, 3727, 4105, 4213, 4453, 4771, 4885, 5581, 5857, 6019, 6031, 6265, 6397, 6967, 7345, 7615, 7831, 8425, 8857, 8929
Offset: 1
Keywords
Examples
For n=25, the central binomial coefficient (C(25,12) = 5200300) is divisible by C(25,0), C(25,1), C(25,3), C(25,12), C(25,13), C(25,22), C(25,24), and C(25,25).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..260
Extensions
More terms from Michel Marcus, Aug 23 2019