A080392 Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.
2, 420, 920, 1122, 1218, 1892, 1978, 2444, 2914, 3198, 3782, 4028, 4136, 4292, 4664, 4958, 4960, 5330, 5762, 5986, 6020, 6032, 6710, 6834, 6864, 6882, 6954, 6956, 6968, 7106, 7130, 7140, 7238, 7254, 7448, 7616, 8178, 8190, 8400, 8692, 9462, 9506, 10712, 11060, 11288
Offset: 1
Keywords
Examples
A080383(2) = 3; A080383(420) = 11; A080383(920) = 11; A080383(1122) = 9; A080383(1218) = 9.
Links
- David A. Corneth, Table of n, a(n) for n = 1..274 (Terms <= 60000)
Programs
-
Maple
isa := proc(n) local bn, bm; if n mod 2 = 0 then bn := binomial(n, iquo(n,2)): if modp(bn, n) = 0 then bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0): return 1 <> add(bm(n, j), j=2..iquo(n,2)-1) fi fi; false end: select(isa, [$1..5000]); # Peter Luschny, Aug 04 2017
-
Mathematica
Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}] (* Second program: *) Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* Michael De Vlieger, Jul 30 2017 *)
Extensions
More terms from Michael De Vlieger, Jul 30 2017
Comments