cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080392 Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.

Original entry on oeis.org

2, 420, 920, 1122, 1218, 1892, 1978, 2444, 2914, 3198, 3782, 4028, 4136, 4292, 4664, 4958, 4960, 5330, 5762, 5986, 6020, 6032, 6710, 6834, 6864, 6882, 6954, 6956, 6968, 7106, 7130, 7140, 7238, 7254, 7448, 7616, 8178, 8190, 8400, 8692, 9462, 9506, 10712, 11060, 11288
Offset: 1

Views

Author

Labos Elemer, Mar 17 2003

Keywords

Comments

Numbers arising in A067348 and not present in A080385.
Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - Peter Luschny, Aug 04 2017

Examples

			A080383(2) = 3;
A080383(420) = 11;
A080383(920) = 11;
A080383(1122) = 9;
A080383(1218) = 9.
		

Crossrefs

Programs

  • Maple
    isa := proc(n)  local bn, bm;
    if n mod 2 = 0 then bn := binomial(n, iquo(n,2)):
    if modp(bn, n) = 0 then
       bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0):
       return 1 <> add(bm(n, j), j=2..iquo(n,2)-1)
    fi fi; false end:
    select(isa, [$1..5000]); # Peter Luschny, Aug 04 2017
  • Mathematica
    Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}]
    (* Second program: *)
    Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* Michael De Vlieger, Jul 30 2017 *)

Extensions

More terms from Michael De Vlieger, Jul 30 2017