A080416 Stirling-like number triangle defined by paired decomposition of C(n+3,3) = A000292.
1, 1, 1, 1, 4, 1, 1, 12, 10, 1, 1, 32, 67, 20, 1, 1, 80, 376, 252, 35, 1, 1, 192, 1909, 2560, 742, 56, 1, 1, 448, 9094, 22928, 12346, 1848, 84, 1, 1, 1024, 41479, 189120, 177599, 46912, 4074, 120, 1, 1, 2304, 183412, 1472704, 2318149
Offset: 0
Examples
Rows are {1}, {1, 1}, {1, 4, 1}, {1, 12, 10, 1}, {1, 32, 67, 20, 1}, ...
Links
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013-2014.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
Programs
-
Mathematica
s[b_, n_, k_] := s[b, n, k] = Which[n==k==0, 1, n==0, 0, k==0, 0, True, s[b+1, n-1, k-1] + k*b*s[b, n-1, k]] Table[s[0, n+2, k+2], {n, 0, 10}, {k, 0, n}] // Flatten (* a specialization of equation (9) in the Corcino et al. paper *) (* Mikhail Lavrov, Oct 12 2022 *) T[ n_, k_] := If[n < 0, 0, SeriesCoefficient[x^k / Product[1 + x*(Floor[j/2] + 1)*(Floor[j/2] - k - 1), {j,0,k}], {x,0,n}]]; (* Michael Somos, Oct 12 2022 *)
-
PARI
{T(n, k) = if(n<0, 0, polcoeff(x^k / prod(j=0, k, 1 + x*(j\2 + 1)*(j\2 - k - 1) + x*O(x^n)), n))}; /* Michael Somos, Oct 12 2022 */
Formula
Columns are generated as follows: Display C(n+3, 3) as row sums of the triangle A080251, or {1}, {2, 2}, {3, 3, 4}, {4, 4, 6, 6}, {5, 5, 8, 8, 9}, ... The columns are then generated by 1/(1-x), 1/(1-2x)^2, 1/((1-3x)^2*(1-4x)), 1/((1-4x)^2*(1-6x)^2), etc.
Comments